
23 570684 Ch18.qxd 3/31/04 3:00 PM Page 233

Chapter 18: Do C While You Sleep 233
� Having a for loop inside a while loop is referred to as a nested loop. Note

that both loops don’t need to be of the same type (two for loops or two
while loops).

� A nested loop is basically one loop spinning ’round inside another loop.

� The first loop, or outside loop, ticks off first. Then, the inside loop ticks
off, looping as many times as it does. After that, the outside loop ticks off
another one, and then the inside loop is repeated entirely again. That’s
how they work.

� Keep separate the variables associated with one loop or another. For
example, the following two for loops are nested improperly:

for(x=0;x<5;x++)
for(x=5;x>0;x--);

Because x is used in both loops, these nested loops don’t behave as you
expect. This loop is infinite, in fact, because both are manipulating the
same variable in different directions.

� This disaster probably isn’t apparent to you. You write some huge pro
gram and nest two for loops miles apart without thinking about it, by
using your favorite variable x (or i) in each one. Those kind of bugs can
wreck your day.

� The way to avoid messing up nested loops is to use different variables
with each one — for example, a or b, or i1 and i2, or even something
descriptive, such as start and delay, as used in the COUNTDWN.C
example.

� That nested for loop in COUNTDWN.C ends with a semicolon, indicating
that it doesn’t “own” any statements that are repeated. Here’s another
way you could format it:

for(delay=0;delay<100000;delay++)
;

This example shows you that the for loop doesn’t have any statements
worth repeating. It just sits and spins the microprocessor, wasting time
(which is what you want).

� Although delay loops, such as the one shown in COUNTDWN.C, are
common, a better way exists. That is to use the computer’s internal
clock to time a delay of a specific duration. I show you an example in C
All-in-One Desk Reference For Dummies (Wiley).

� My first IBM PC — some 20 years ago — required a delay loop that
counted to only 10,000 for about a half-second pause between each line
displayed. Today’s computers are much, much faster — obviously!

